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We present the �rst measurement of the integrated forward-backward charge asymmetry in top-
antitop quark pair (t �t) production in proton-antiproton (p�p) collisions in the lepton+jets �nal state.
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Using a b-jet tagging algorithm and kinematic reconstruction assumingt �t + X production and decay,
a sample of 0:9 fb � 1 of data, collected by the D0 experiment at the Fermilab Tevatron Collider, is
used to measure the asymmetry for di�eren t jet multiplicities. The result is also used to set upper
limits on t �t + X production via a Z 0 resonance.

PACS numbers: 12.38.Qk, 12.60.-i, 13.85.-t, 13.87.Ce

At lowest order in quantum chromodynamics (QCD),
the standard model (SM) predicts that the kinematic
distributions in p�p ! t �t + X production are charge
symmetric. But this symmetry is accidental, as the
initial p�p state is not an eigenstate of charge conjuga-
tion. Next-to-leading order (NLO) calculations predict
forward-backward asymmetriesof (5{10)% [1, 2], but re-
cent next-to-next-to-leading order (NNLO) calculations
predict signi�can t correctionsfor t �t production in associ-
ation with a jet [3]. The asymmetry arisesmainly from
interference between contributions symmetric and anti-
symmetric under the exchanget $ �t [1], and dependson
the region of phasespacebeing probed and, in particu-
lar, on the production of an additional jet [2]. The small
asymmetries expected in the SM make this a sensitive
probe for new physics [4].

A charge asymmetry in p�p ! t �t + X can be ob-
served as a forward-backward production asymmetry.
The signed di�erence between the rapidities [5] of the
t and �t, � y � yt � y�t , reects the asymmetry in t �t pro-
duction. We de�ne the integrated charge asymmetry as
A fb = (N f � Nb) =(N f + Nb) ; whereN f (Nb ) is the num-
ber of events with a positive (negative) � y.

This Letter describes the �rst measurement of A fb in
p�p ! t �t + X production. The 0:9 fb� 1 data sampleused
wascollectedat

p
s = 1:96TeV with the D0 detector [6],

usingtriggers that required a jet and an electronor muon.
In the lepton+jets �nal state of the t �t system,oneof the
two W bosonsfrom the t �t pair decays into hadronic jets
and the other into leptons, yielding a signature of two b-
jets, two light-a vor jets, an isolated lepton, and missing
transverseenergy (=ET ). This decay mode is well suited
for this measurement, as it combines a large branching
fraction (� 34%) with high signal purit y, the latter a con-
sequenceof requiring an isolated electron or muon with
large transversemomentum (pT ). The main background
is from W +jets and multijet production. This channel
allows accurate reconstruction of the t and �t directions
in the collision rest frame, and the chargeof the electron
or muon distinguishesbetweenthe t and �t quarks.

The dependenceof A fb on the region of phasespace,as
calculated by the mc@nlo event generator[7], is demon-
strated in Fig. 1. The large dependenceon the fourth-
highest jet pT is not available in the calculations of Refs.
[1{3], as thesedo not considerdecays of the top quarks,
and include only acceptancefor jets from additional ra-
diation.

We conclude that acceptancecan strongly a�ect the
asymmetry. To facilitate comparison with theory, the
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FIG. 1: Forward-backward t �t charge asymmetry predicted by
mc@nlo as a function of the fourth-highest particle jet pT .

analysis is therefore designed to have an acceptance
which can be described simply. Event selection is lim-
ited to either: (i) selectionson directions and momenta
that can be described at the particle level (which refers
to produced particles before they start interacting with
material in the detector) or (ii) criteria with high signal
e�ciency , so that their impact on the region of accep-
tance is negligible. In addition, the observable quantit y
and the �tting procedure are chosen to ensure that all
events have the same weight in determining the asym-
metry.

The measurement is not corrected for acceptanceand
reconstruction e�ects, but a prescription provides the ac-
ceptanceat the particle level. Reconstruction e�ects are
also accommodated at the particle level by de�ning the
asymmetry as a function of the generatedj� yj:

A fb (j� yj) =
g(j� yj) � g(�j � yj)
g(j� yj) + g(�j � yj)

; (1)

where g is the probabilit y density for � y within the ac-
ceptance. This asymmetry can be folded with the \geo-
metric dilution," D, which is described later:

Apred
fb =

Z 1

0
A fb (� y) D (� y) [g (� y) + g(� � y)] d� y:

(2)
This procedure yields the predictions in Table I. The
values are smaller than those of Ref. [1, 2], becauseof
the inclusion of jet acceptanceand dilution.

We select events with at least four jets reconstructed
usinga conealgorithm [8] with an angular radius R = 0:5
(in rapidit y and azimuthal angle). All jets must have
pT > 20GeV and pseudorapidity (relativ e to the re-
constructed primary vertex) j� j < 2:5. The leading jet
must have pT > 35GeV. Events are required to have
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TABLE I: Predictions basedon mc@nlo .

N jet Apred
fb (in %)

> 4 0.8� 0.2(stat :) � 1.0(accept:) � 0.0(dilution)
4 2.3� 0.2(stat :) � 1.0(accept:) � 0.1(dilution)
> 5 � 4:9 � 0.4(stat :) � 1.0(accept:) � 0.2(dilution)

=ET > 15GeV and exactly one isolated electron with
pT > 15GeV and j� j < 1:1 or one isolated muon with
pT > 18GeV and j� j < 2:0. More details on lepton iden-
ti�cation and trigger requirements are given in Ref. [9].
Events in which the lepton momentum is mismeasured
are suppressedby requiring that the direction of the =ET

not be along or opposite the azimuth of the lepton. To
enhancethe signal, at least one of the jets is required
to be identi�ed as originating from a long-lived b hadron
by a neural network b-jet tagging algorithm [10]. The
variables used to identify such jets rely on the presence
and characteristics of a secondaryvertex and tracks with
high impact parameter inside the jet.

The top quark pair is reconstructed using a kinematic
�tter [11], which varies the four-momenta of the de-
tected objects within their resolutions and minimizes a
� 2 statistic, constraining both W boson massesto ex-
actly 80:4GeV and top quark massesto exactly 170GeV.
The b-tagged jet of highest pT and the three remaining
jets with highest pT are used in the �t. The b-tagging
information is used to reduce the number of jet-parton
assignments consideredin the �t. Only events in which
the kinematic �t convergesare used, and for each event
only the reconstruction with the lowest � 2 is retained.

The jet-pT selection criteria strongly a�ect the ob-
served asymmetry (see Fig. 1), and this must be con-
sidered when comparing a model to data. Fortunately,
these e�ects can be approximated by simple cuts on
particle-level momenta without changing the asymmetry
by more than 2% (absolute). This is veri�ed using sev-
eral simulated sampleswith generatedasymmetriesand
particle jets clustered using the pxcone algorithm [12]
(\E" scheme and R = 0:5). The particle jet cuts are
pT > 21GeV and j� j < 2:5, with the additional require-
ment on the leading particle jet pT > 35GeV and the
lepton requirements detailed above. Systematic uncer-
tainties on jet energycalibration intro ducepossibleshifts
of the particle jet thresholds. The shifts are +1 :3

� 1:5 GeV for
the leading jet and +1 :2

� 1:3 GeV for the other jets, for � 1
standard deviation (sd) changesin the jet energycalibra-
tion. The resulting changesin the asymmetry predicted
using mc@nlo are of the order of 0.5%. The e�ect of
all other selectionson the asymmetry is negligible. The
predictions in Table I usea more completedescription of
the acceptancebasedon e�ciencies factorized in pT and
� , accurate to < 1% (absolute).

Misreconstructing the sign of � y dilutes the asymme-
try . Such dilution can arise from misidentifying lepton

TABLE I I: Parameters of the dilution. The � 1 sd values
include both statistical and systematic uncertainties.

Variation c0 c1 c2

N jet > 4 0:262 14:6 � 1:5
+1 sd variation 0:229 20:3 1:2
� 1 sd variation 0:289 11:4 � 2:2
N jet = 4 0:251 17:6 � 1:4
+1 sd variation 0:201 30:3 7:7
� 1 sd variation 0:293 11:6 � 2:3
N jet > 5 0:254 9:6 0
+1 sd variation 0:206 17:4 2:4
� 1 sd variation 0:358 5:0 � 0:9
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FIG. 2: The geometric dilution and its uncertainty band as
a function of generated j� yj for standard model t �t + X pro-
duction and > 4 jets.

charge or from misreconstructing event geometry. The
rate for misidenti�cation of lepton charge is taken from
the signal simulation and veri�ed using data. Falsepro-
duction asymmetriesarising from asymmetriesin the rate
for misidenti�cation of lepton charge are negligible ow-
ing to the frequent reversalof the D0 solenoidand toroid
polarities.

The dilution, D, dependsmainly on j� yj. It is de�ned
asD = 2P � 1, whereP is the probabilit y of reconstruct-
ing the correct sign of � y. It is obtained from t �t + X
events generatedwith pythia [13] and passedthrough a
geant -basedsimulation [14] of the D0 detector, and is
parametrized as:

D (j� yj) = c0 ln
�

1 + c1 j� yj + c2 j� yj2
�

; (3)

with the parametersgiven in Table I I (seeFig. 2).
As this measurement is integrated in j� yj, the depen-

dence of the dilution on j� yj intro duces a model de-
pendenceinto any correction from observed asymmetry
(Aobs

fb ) to a particle-level asymmetry. Such a correction
factor would depend not only on the model's j� yj distri-
bution, but also on its prediction of A fb (j� yj). Further-
more, such a correction would be sensitive to small new
physicscomponents of the selectedsample. We therefore
present a measurement uncorrectedfor reconstruction ef-
fects and provide the readerwith a parametrization of D
that describesthesee�ects, to be applied to any model.
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The dilution dependsweakly on other variables corre-
lated with A fb , such as the number of jets. This possible
bias is included in the systematic uncertainties. Non-
standard production mechanisms can a�ect reconstruc-
tion quality, primarily due to changesin the momenta of
the top quarks. By studying extreme cases,we �nd that
when comparing non-standard t �t + X production to data
an additional 15% relative uncertainty on A fb is needed.

The main background is from W +jets production. To
estimate it, we de�ne a likelihood discriminant L using
variables that are well-described in our simulation, pro-
vide separation betweensignal and W +jets background,
and do not bias j� yj for the selectedsignal. The follow-
ing variablesare used: the pT of the leading b-taggedjet,
the � 2 statistic from the kinematic �t, the invariant mass
of the jets assignedto the hadronic W bosondecay, and
kmin

T = pmin
T Rmin , whereRmin is the smallestangular dis-

tance betweenany two jets usedin the kinematic �t, and
pmin

T is the smaller of the corresponding jets' transverse
momenta.

The next largest background after W +jets is from
multijet production, where a jet mimics an isolated elec-
tron or muon. Following the proceduredescribed in Ref.
[9], the distributions in likelihood discriminant and re-
constructed asymmetry for this background are derived
from samplesof data that fail lepton identi�cation. The
normalization of this background is estimated from the
sizeof those samplesand the large di�erence in e�cien-
cies of lepton identi�cation for true and false leptons.
The e�ects of additional background sourcesnot consid-
ered explicitly in extracting A fb ; namely Z +jets, single
top quark, and diboson production; are evaluated using
ensembles of simulated datasetsand found negligible.

The samplecomposition and A fb are extracted from a
simultaneous maximum-likelihood �t to data of a sum
of contributions to L and to the sign of the recon-
structed � y (� yreco ) from forward signal, backward sig-
nal, W +jets, and multijet production. Both signal con-
tributions are generatedwith pythia , have the samedis-
tribution in L , and di�er only in their beingreconstructed
aseither forward or backward. The W +jets contribution
is generatedwith alpgen [15] interfaced to pythia and
has its own reconstructed asymmetry. Although W bo-
son production is inherently asymmetric, the kinematic
reconstruction to the t �t + X hypothesisreducesits recon-
structed asymmetry to [4:4 � 1:6(stat:)] %. The multijet
contribution is derived from data, as described above.
The �tted parameters are shown in Table I I I. Correla-
tions between the asymmetry and the other parameters
are < 10%. The �tted asymmetriesin data are consistent
with the SM predictions given in Table I. In Fig. 3 we
compare the �tted distributions to data for events with
> 4 jets.

The dominant sourcesof systematicuncertainty for the
measuredasymmetry are the relative jet energy calibra-
tion betweendata and simulation (� 0:5%), the asymme-

TABLE I I I: Number of selectedevents and �t results in data.

> 4 Jets 4 Jets > 5 Jets
No. Events 376 308 68
t �t + X 266+23

� 22 214� 20 54+10
� 12

W +jets 70� 21 61+19
� 18 7+11

� 5

Multijets 40� 4 32:7+3 :5
� 3:3 7:1+1 :6

� 1:5
A fb (12� 8)% (19� 9)% (� 16+15

� 17 )%

try reconstructed in W +jets events (� 0:4%), and the
modeling of additional interactions during a single p�p
bunch crossing (� 0:4%). The total systematic uncer-
tainty for the asymmetry is � 1%, which is negligible
comparedto the statistical uncertainty.

We check the simulation of the production asym-
metry, and of the asymmetry reconstructed under the
t�t + X hypothesis in the W +jets background, by re-
peating the analysis in a sample enriched in W +jets
events. The selection criteria for this sample are iden-
tical to the main analysis, except that we veto on any
b-tags. Both the fully reconstructed asymmetry and the
forward-backward lepton asymmetry are consistent with
expectations. We also �nd that the �tted sample com-
position (Table I I I) is consistent with the cross section
for t �t + X production obtained in a dedicated analysis
on this dataset. We check the validit y of the �tting pro-
cedure, its calibration, and its statistical uncertainties
using ensembles of simulated datasets.

To demonstrate the measurement's sensitivity to new
physics, we examine t �t production via neutral gauge
bosons(Z 0) that are heavy enough to decay to on-shell
top and antitop quarks. Direct searcheshave placed lim-
its on t �t production via a heavy narrow resonance[17],
while the asymmetry in t �t production may be sensitive
to production via both narrow and wide resonances.The
Z 0 ! t �t channel is of interest in modelswith a \leptopho-
bic" Z 0 that decays dominantly to quarks. We study the
scenario where the coupling between the Z 0 boson and
quarks is proportional to that betweenthe Z bosonand
quarks, and interference e�ects with SM t�t production
are negligible. Using pythia we simulate t �t production
via Z 0 resonanceswith decay rates chosento yield nar-
row resonancesas in Ref. [17], and �nd large positive
asymmetries[(13{35)%], which are a consequenceof the
predominantly left-handed decays. We predict the distri-
bution of A fb asa function of the fraction (f ) of t �t events
produced via a Z 0 resonanceof a particular mass from
ensembles of simulated datasets. We use the procedure
of Ref. [18] to arrive at the limits shown in Fig. 4. These
limits can be applied to wide Z 0 resonancesby averaging
over the distribution of Z 0 mass.

In summary, we present the �rst measurement of the
integrated forward-backward chargeasymmetry in t �t + X
production. We �nd that acceptancea�ects the asym-
metry and must be speci�ed as above, and that correc-
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FIG. 3: Comparison of data for > 4 jets with the �tted model as a function of L for events reconstructed (a) as forward
(� yreco > 0) and (b) as backward (� yreco < 0). The number of events from each sourceis listed with its statistical uncertainty.
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FIG. 4: 95% C.L. limits on the fraction of t �t produced via a
Z 0 resonanceas a function of the Z 0 mass,under assumptions
detailed in the text. Limits expected in the absenceof a Z 0

resonanceare shown by the dashed curve, with the shaded
bands showing limits one and two standard deviations away.
The observed limits are shown by the solid curve, and the
excluded region is hatched.

tions for reconstruction e�ects are too model-dependent
to be of use. We observe an uncorrected asymme-
try of Aobs

fb = [12� 8(stat :) � 1 (syst:)] % for t �t + X
events with > 4 jets that are within our acceptance,
and we provide a dilution function (Eq. 3) that can
be applied to any model (through Eq. 2). For events
with only four jets and for those with > 5 jets, we
�nd Aobs

fb = [19� 9(stat:) � 2 (syst:)] % and Aobs
fb =�

� 16+15
� 17 (stat:) � 3 (syst:)

�
%, respectively, where most

of the systematicuncertainty is from migrations of events
betweenthe two subsamples.The measuredasymmetries
are consistent with the mc@nlo predictions for standard
model production.
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